

# **Rocky Mountain West Pavement Preservation Partnership Meeting**

Reno, Nevada October 4-6, 2011

### **Arizona Department of Transportation**

Mafiz Mian P.E. Yongqi Li Ph.D, P.E.





# **Table of Contents**

- Definitions
- ADOT Pavement Preservation
- Project Selection Process
- Budget
- Expectations from RMWPPP
- ADOT's Pavement Preservation culture







# **Definitions**

### **Pavement Preservation**

- Proactive non-structural treatment
- Restores serviceability
- Extends the service life

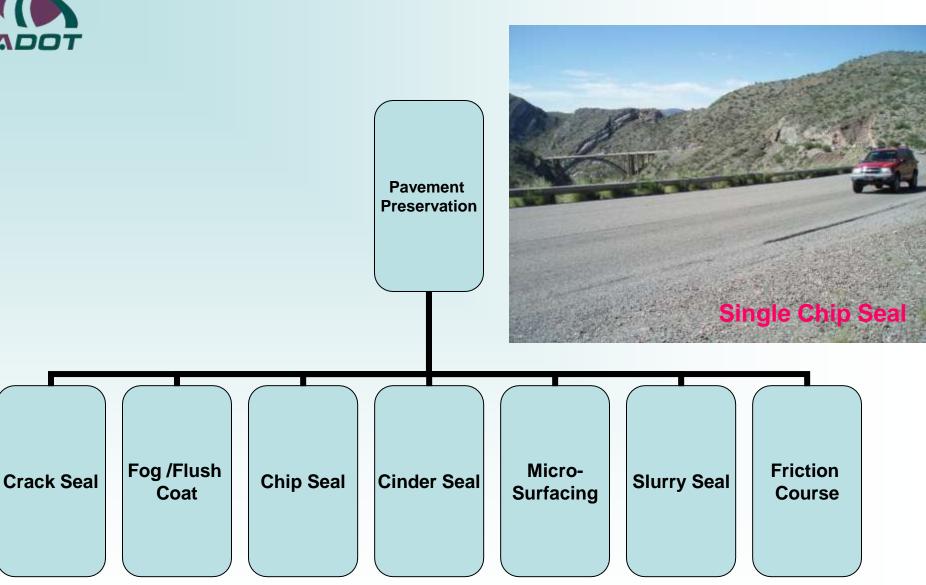






# **Definitions**

### **Pavement Rehabilitation**


- Structural enhancement
- Extend the service life
- Improve load carrying capacity







# **ADOT Pavement Preservation**





# Flush/Fog Coat

#### **Used to:**

- Seal asphalt surface
- Rejuvenate older surface
- Reduce raveling and crack development

#### **Emulsion**

PASS QB, SS-1







# **Chip Seal**

### 2 Types

- 1) Single Chip Seal
- 2) Single Chip Seal + Fog coat

### **Binder**

CRS-2P

### **Used on**

Low volume and rural roads







## **Chip Seal**

### **Used to:**

- Provide new wearing surface
- Waterproof the surface
- Seal small cracks
- Reduce oxidation
- Improve skid resistance







### **Cinder Seal**

### **Binder**

PASS CR (Chip Retention)

### **Used for**

- Treating crack & moderate raveling
- Rural roads









## **Micro-Surfacing**

### **Used For**

- Rut, crack & void filling / sealing
- Applications on raveled, flushed and oxidized surfaces
- Minor leveling
- Urban and high volume roads
- Good in curb and gutter sections to reduce clean-up operations







## **Micro-Surfacing**

### **Materials**

- Polymer modified, cationic, quick setting (mixing grade) emulsified asphalt (CQS-1hP)
- A minimum of 4% polymer solids
- Type III Micro-Surfacing is used







# **Slurry Seal**

### **Used For**

- Sealing minor cracks and voids
- Retarding raveling
- Improving skid resistance and ride quality
- Roads with moderate traffic
- Good in curb and gutter sections to reduce clean-up operations

#### **Materials**

- Polymer modified emulsified asphalt, QS-P or CQS-P
- 2% minimum solid polymer non-latex





# Crack Seal

# ADOT

### **Used to**

Seal crack width ¼ inch or greater

### **Materials**

- Polymer Modified Asphalt Rubber Crack Sealant
- Blotter (5%-10%)



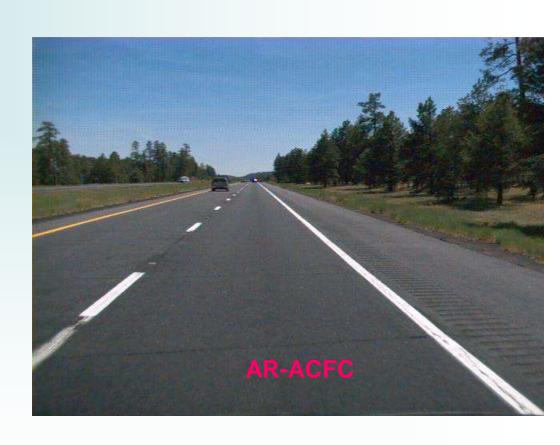




# Crack Seal is usually done before another treatment






Minimum 3 months time gap between Crack Seal & 2<sup>nd</sup> treatment



## **Open Graded Friction Course**

### **Advantages**

- Minimal generation of dust during construction
- Resists rutting due to heavy traffic
- No stone loss that might cause windshield damage
- No binder runoff
- Restores skid resistance
- Treats raveled surfaces
- Improves ride quality
- Low noise (AR-ACFC)
- Drains water





### **Open Graded Friction Course**

### **Asphaltic Concrete Friction Course**

### **Asphalt Binder**

- PG 64-16
- 6% 7% binder

### **Asphalt Rubber ACFC**

### **Binder**

- PG Varies with temperature
- Crumb rubber gradation Type B
- 20% crumb rubber of asphalt cement
- 9% binder





## **Project Selection Process**

# Project is selected based on info obtained from:

- Project request/scope from district
- PMS- Project Management System
- Road Review/inspection





### Preventative Surface Treatment Project Request

| Project Name/Location:      | ed Rock                       | District: Yuma      |                                    |  |  |  |  |  |
|-----------------------------|-------------------------------|---------------------|------------------------------------|--|--|--|--|--|
| Highway Name: Yuma-Ca       | asa Grande                    |                     |                                    |  |  |  |  |  |
| Route: I-8                  |                               | Begin MP: 82        | End MP: 96 Leng                    |  |  |  |  |  |
| Staging Location/Address    | : East end of EB Sentinel Res | t Area              | Treatment Type: Crack I            |  |  |  |  |  |
| Total Width of mainline lan | nes to be treated: 48 feet    |                     | Length of Shoulder(s) to be treate |  |  |  |  |  |
| Estimated Amt: \$ 374,4     | 113                           |                     | Width of Shoulder(s) to be treate  |  |  |  |  |  |
| Date Submitted: 8-18-201    | 0 By: Michael Jo              | nes for Paul Patane | District Engineer Mail Dro         |  |  |  |  |  |
| Scope of Work:              | oioct Poque                   | st/Scone            | from District                      |  |  |  |  |  |

### Project Request/Scope from District

**Pavement:** Crack fill pavement surface full-width (lanes and shoulders) in both directions using rubber crack Also, crack fill ramps and crossroad pavement surfaces full width at Exit 87 (Sentinel).

Other:

#### Project Justification:

The existing pavement surface is experiencing cracking. This project will seal all existing cracks 1/4" or larger using sealant. The sealing of the cracks will extend life of the pavement by preventing water from intruding into the pavem material and causing the base material to become weakened under heavy truck traffic. Cracks >1/2" shall be routed a

#### Traffic Control:

Traffic Control will be done by District Forces or by Separate Contract

Τo From Suf T1 L2 T2 L3 Т3 L5 | L6 L7 YR L1 L4 T4 T5 T6 T7 **PROJNUMBER** MOL Tracs No. Lane Mρ Mp. AC 40 PD 125 94 H293601C 108.42 108.56 01 IM-10-2(146) 185 195 RE 35 AC. 30 FR | 05 IM-10-3(355). 99 H481901C 10 175.8 00 169 FL I 10- 3-917 08 70 PMS01280 163.83 AC 20 05 83 160.55 BM. 03 FC IR 10-3-142 03 PMS01581 RE 50 AC 70 FR 97 H356201C 160.28 167.09 05 IM 10- 3-272 10 124.21 AΒ 80 AC 80 FC | 05 ARRA-010-B(205)A H721101C 124 05 11 162.09 163.52 AB. 40 PD 140 STP-202-C(006)B 04 H541701C 04 106.94 AΒ 110 H293601C 106.8 60 PD. IM-10-2(146) 94 01 RE 35 55 H356201C 160.28 167.09 AC. FR | 05 IM 10- 3-272 10 97 CL 50 1-10-3(239) 147.93 148.4 PD 100 89 H008904C 03 SM 200 AΒ 40 AC 35 FC 110-3-55 66 PMS01273 197.53 199.77 05 11 153 155 SM 50 AB. 40 PC 90 I 10-3-54 08 68 PMS01272 167.33 ΑC FC | 05 PMS01278 164.68 SM 14 AB. 40 35 110-3-69 08 68 10 05 H637103C 155.44 159,69 FR NH-900-A(072)A 05 FR 10 010-B-NFA H694501C 130.42 137.45 06 07 137.48 FR 10 010-B-NFA H694501C 130.42 06 07 **History from** P. 8 145.94 H626401C 04 167.1 AC H583901C 173.15 IM010-C(006)A 06 04 173.15 RE 55 AC 50 FR 05 IM010-C(006)A 167.1 06 04 H583901C 173,15 RE 45 AC 40 05 H583901C 167.1 FR IM010-C(006)A 04 06 RE 55 FR | 05 167.1 173,15 AC. 50 IM010-C(006)A 06 04 H583901C 143,70. 148.01 FR 10 NH-900-A(017)A 04 H637102C 08 143,70. 10 H637102C 148.01 FR NH-900-A(017)A 08 04 137.42. 142.82 FR 10 NH-900-A(072)A 05 H637103C 05 142.82 FR 10 H637103C 137,42. 05 05 NH-900-A(072)A 159.69 H637103C 155.44 FR 10 NH-900-A(072)A 05 05 113.2 121.10... RE 35 AC. 30 FR 05 IM-010-B-(006)A 05 H612801C 06 RE 45 AC IM-010-B-(006)A H612801C 113.2 121.10... 40 FR 05 05 06 136.44 PC 150 H591001C 135.83 ACIM-STP-010-B... 01 03 150.38 CL 00 100 1-10-3(204) 88 H011504C 150.01 PD. 09

| _ | 100 | 0 | ' | _  |    | 0 | 0 | 0        |   | 4   | J.J | 3.3 |   |    |     | 02  | 00  | 74  | 0.5  | 0.23 | 0.20 | 34   |
|---|-----|---|---|----|----|---|---|----------|---|-----|-----|-----|---|----|-----|-----|-----|-----|------|------|------|------|
| E | 101 | 0 | 1 | 1  |    | 0 | 0 | 0        |   | 4   | 4   | 4   |   |    |     | 56  | 62  | 72  | 0.32 | 0.1  | 0.15 | 54   |
| E | 102 | 0 | 0 | 0  |    | 0 | 0 | 0        |   | 4   | 4   | 4   |   |    |     | 57  | 61  | 63  | 0.33 | 0.01 | 0.18 | 54   |
| E | 103 | 0 | 0 | 0  |    | 0 | 0 | 0        |   | 4   | 4   | 4   |   |    |     | 49  | 52  | 66  | 0.15 | 0.05 | 0.11 | 54   |
| E | 104 | 0 | 0 | 0_ |    | 0 | 0 | 0        |   | 4   | 4   | 4   |   |    |     | EA  | 62  | 62  | 0.16 | 0.18 | 0.02 | 54   |
| E | 105 | 1 | 1 |    | ST |   |   | <b>S</b> | D |     | 4   | 4   | M | Pi | VI. | 25  | 73  | 71  | 0.23 | 0.17 | 0.09 | 95   |
| E | 106 | 4 | 4 | 4  |    |   | 0 | 0        |   | 4   | 4   | 4   |   |    |     | 93  | 99  | 109 | 0.07 | 0.03 | 0.04 | 5896 |
| E | 107 |   |   |    |    |   |   |          |   |     |     |     |   |    |     | 118 | 121 | 133 | 0.02 | 0    | 0.01 | 122  |
| E | 108 |   |   |    |    |   |   |          |   |     |     |     |   |    |     | 122 | 94  | 128 | 0.08 | 0.02 | 0.06 | 122  |
| E | 109 | 0 | 0 | 0  |    | 0 | 0 | 0        |   | 3.5 | 3.5 | 3.5 |   |    |     | 57  | 62  | 77  | 0.13 | 0.07 | 0.16 | 119  |
| E | 110 | 0 | 0 | 0  |    | 0 | 0 | 0        |   | 4   | 4   | 4   |   |    |     | 63  | 62  | 69  | 0.2  | 0.1  | 0.13 | 116  |
| - |     | 0 | - | 4  |    | ^ |   | ^        |   |     |     |     |   |    |     | 04  |     | 00  | 040  | 0.04 | 014  | 440  |

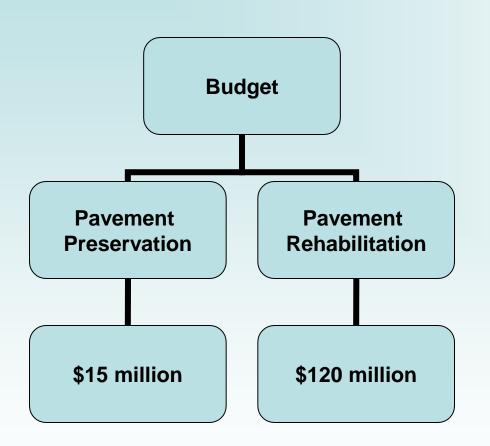
| Crk<br>2010 | Crk<br>2011 | Ptch<br>2008 | Ptch<br>2009 | Ptch<br>2010 | Flsh<br>2008 | Flsh<br>2009 |     | Flsh<br>2011 | Fret<br>2009 |  | Ride<br>2008 | Ride<br>2009 |    |      | Rut<br>2009 | Rut<br>2010 | Rut<br>2011 | MntCst<br>2008 | MntCst<br>2009 | MntC:<br>2010 |
|-------------|-------------|--------------|--------------|--------------|--------------|--------------|-----|--------------|--------------|--|--------------|--------------|----|------|-------------|-------------|-------------|----------------|----------------|---------------|
| 2           |             | 0            | 0            | 0            | 3.8          | 3.8          | 3.8 |              |              |  | 60           | 65           | 71 | 0.14 | 0.07        | 0.08        |             | 144            |                |               |

|                  | 100   | 20321  | 20300  |    | 7.5  | 0.74       |     |   | 4073  | 4073          | 4073      |  |
|------------------|-------|--------|--------|----|------|------------|-----|---|-------|---------------|-----------|--|
| E                | 101   | 28321  | 28500  |    | 7.5  | 6.74       |     |   | 4079  | 4079          | 4079      |  |
| E                | 102   | 28321  | 28500  |    | 7.5  | 6.74       |     |   | 4079  | 4079          | 4079      |  |
| E                | 103   | 28321  | 28500  |    | 7.5  | 6.74       |     |   | 4079  | 4079          | 4079      |  |
| E                | 104   | 33614  | 33500  |    | 7.22 | 6.42       |     |   | 4136  | 4136          | 4136      |  |
| E                | 105   | 33614  | 33500  |    | 7.22 | 6.42       |     |   | 4136  | 4136          | 4136      |  |
| E                | 106   | 33614  | 33500  |    | 7.22 | 6.42       |     |   | 4136  | 4136          | 4136      |  |
| E                | 107   | 33614  | 33500  |    | 8.25 | 7.22       |     |   | 5552  | 5552          | 5552      |  |
| E                | 108   | 33614  | 33500  |    | 8.25 | 7.22       |     |   | 5552  | 5552          | 5552      |  |
| E                | 109   | 33614  | 33500  |    | 7.22 | 6.42       |     |   | 4136  | 4136          | 4136      |  |
| Е                | 110   | 31852  | 33500  |    | 6.32 | 6.19       |     |   | 4307  | 4307          | 4307      |  |
| Е                | 111   | 31852  | 33500  |    | 6.32 | 6.19       |     |   | 4307  | 4307          | 4307      |  |
| Е                | 112   | 31852  | 33500  |    | 6.32 | 6.19       |     |   | 4307  | 4307          | 4307      |  |
| Е                | 113   | 34000  | 37500  |    | 5.55 | 6.08       |     |   | 3574  | 3574          | 3574      |  |
| Е                | 114   | 34000  | 37500  |    | 5.55 | 6.08       |     |   | 3574  | 3574          | 3574      |  |
| Е                | 115   | 43649  | 42000  |    | 4.32 | 3.84       |     |   | 5465  | 5465          | 5465      |  |
| Е                | 116   | 43649  | 42000  |    | 4.32 | 3.84       |     |   | 5465  | 5465          | 5465      |  |
| Е                | 117   | 57205  | 59500  |    | 6.74 | 6.44       |     |   | 5465  | 5465          | 5465      |  |
| Е                | 118   | 57205  | 59500  |    | 6.74 | 6.44       |     |   | 5465  | 5465          | 5465      |  |
| Е                | 119   | 57205  | 59500  |    | 6.74 | 6.44       |     |   | 5465  | 5465          | 5465      |  |
| E                | 120   | 57205  | 59500  |    | 6.74 | 6.44       |     |   | 5465  | 5465          | 5465      |  |
| Е                | 121   | 591084 | 08500  |    |      | <i>5</i> 4 | Fre | m | 5465  | 54 AT /       | 5 GE      |  |
| E                | 122   | 65639  | 68500  | 16 | gt   | 5.67       | rc  |   | 6069  | 54 AV<br>6069 | 6000      |  |
| Е                | 123   | 65839  | 68500  |    | 6.1  | 5.87       |     |   | 6069  | 6069          | 6069      |  |
| Е                | 124   | 65839  | 68500  |    | 6.1  | 5.87       |     |   | 6069  | 6069          | 6069      |  |
| Е                | 125   | 75906  | 75000  |    | 6.12 | 5.44       |     |   | 7802  | 7802          | 7802      |  |
| Е                | 126   | 75906  | 75000  |    | 6.12 | 5.44       |     |   | 7802  | 7802          | 7802      |  |
| Е                | 127   | 91711  | 91000  |    | 6.06 | 5.39       |     |   | 8455  | 8455          | 8455      |  |
| Е                | 128   | 91711  | 91000  |    | 6.06 | 5.39       |     |   | 8455  | 8455          | 8455      |  |
| Е                | 129   | 134965 | 100000 |    | 6.51 | 5.78       |     |   | 10406 | 10406         | 10406     |  |
| Е                | 130   | 145728 | 120000 |    | 7.17 | 6.28       |     |   | 16736 | 16736         | 16736     |  |
| E                | 131   |        | 120000 |    | 7.17 | 6.28       |     |   | 16736 | 16736         | 16736     |  |
| E                | 132   |        | 130000 |    | 5.34 | 4.68       |     |   | 17301 | 17301         | 17301     |  |
| $\dashv \bar{-}$ | 1 - 2 |        |        |    |      |            |     |   |       |               | 1 1 2 2 1 |  |



# Road Review/Inspection








Road inspection from headquarter



# Budget



Federal Funds are used for all projects except for cinder seal and some flush projects.







# **Expectations from RMWPPP**

# Through RMWPPP we expect to share information, views & experience :

- on issues
- to resolve issues
- to improve specifications
- to improve construction method to make pavement preservation more cost effective & efficient.







# **ADOT's Pavement Preservation culture**

- Pavement Preservation(PP) is our permanent culture
- Our dependency on PP has significantly increased
- Budget for PP is not enough
- We are moving funds from pavement rehabilitation to PP
- That way we are delaying pavement rehabilitation and extending the life of pavement & reducing the life cycle cost







# Any Question?





